Eggshell Crack Detection Based on Acoustic Impulse Response and Supervised Pattern Recognition
نویسندگان
چکیده
Lin H., Zhao J., Chen Q., Cai J., Zhou P. (2009): Eggshell crack detection based on acoustic impulse response and supervised pattern recognition. Czech J. Food Sci., 27: 393–402. A system based on acoustic resonance was developed for eggshell crack detection. It was achieved by the analysis of the measured frequency response of eggshell excited with a light mechanism. The response signal was processed by recursive least squares adaptive filter, which resulted in the signal-to-noise ratio of the acoustic impulse response reing remarkably enhanced. Five features variables were exacted from the response frequency signals. To develop a robust discrimination model, three pattern recognition algorithms (i.e. K-nearest neighbours, artificial neural network, and support vector machine) were examined comparatively in this work. Some parameters of the model were optimised by cross-validation in the building model. The experimental results showed that the performance of the support vector machine model is the best in comparison to k-nearest neighbours and artificial neural network models. The optimal support vector machine model was obtained with the identification rates of 95.1% in the calibration set, and 97.1% in the prediction set, respectively. Based on the results, it was concluded that the acoustic resonance system combined with the supervised pattern recognition has a significant potential for the cracked eggs detection.
منابع مشابه
Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کاملUse of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil
Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned wi...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملUsing Pattern Search Algorithm and Finite Element Method to Detect Rotor Cracks
The vibration pattern of a rotor system reflects the mechanical parameter changes in the system. Hence, the use of vibration monitoring is considered as a possible means of detecting the presence and growth of the cracks. In this paper, a pattern search based method for shaft crack detection is proposed and described which formulates the shaft crack detection as an optimization problem by means...
متن کامل